3.2.12 \(\int \frac {\sqrt {a+b x+c x^2}}{x (d+e x+f x^2)} \, dx\) [112]

Optimal. Leaf size=523 \[ -\frac {\sqrt {a} \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{d}+\frac {\left (c d \left (e-\sqrt {e^2-4 d f}\right )-f \left (2 b d-a \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )+f \left (2 a f-b \left (e-\sqrt {e^2-4 d f}\right )\right )}}-\frac {\left (c d \left (e+\sqrt {e^2-4 d f}\right )-f \left (2 b d-a \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )+f \left (2 a f-b \left (e+\sqrt {e^2-4 d f}\right )\right )}} \]

[Out]

-arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))*a^(1/2)/d+1/2*arctanh(1/4*(4*a*f+2*x*(b*f-c*(e-(-4*d*f+e^2
)^(1/2)))-b*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2-(-b*f+c*e)*(-4*d*
f+e^2)^(1/2))^(1/2))*(c*d*(e-(-4*d*f+e^2)^(1/2))-f*(2*b*d-a*(e+(-4*d*f+e^2)^(1/2))))/d*2^(1/2)/(-4*d*f+e^2)^(1
/2)/(f*(2*a*f-b*(e-(-4*d*f+e^2)^(1/2)))+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)-1/2*arctanh(1/4*(4*a*f-b*(e+
(-4*d*f+e^2)^(1/2))+2*x*(b*f-c*(e+(-4*d*f+e^2)^(1/2))))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f
^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2))*(-f*(2*b*d-a*(e-(-4*d*f+e^2)^(1/2)))+c*d*(e+(-4*d*f+e^2)^(1/2)))/d*2^
(1/2)/(-4*d*f+e^2)^(1/2)/(c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2))+f*(2*a*f-b*(e+(-4*d*f+e^2)^(1/2))))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 2.14, antiderivative size = 521, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 9, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {6860, 748, 857, 635, 212, 738, 1033, 1090, 1046} \begin {gather*} -\frac {\left (-a f \left (\sqrt {e^2-4 d f}+e\right )+2 b d f-c d \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {f \left (2 a f-b \left (e-\sqrt {e^2-4 d f}\right )\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\left (-a f \left (e-\sqrt {e^2-4 d f}\right )+2 b d f-c d \left (\sqrt {e^2-4 d f}+e\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x + c*x^2]/(x*(d + e*x + f*x^2)),x]

[Out]

-((Sqrt[a]*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/d) - ((2*b*d*f - c*d*(e - Sqrt[e^2 - 4*d*f]
) - a*f*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f
]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2
])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e - Sqrt[e^2 - 4*
d*f]))]) + ((2*b*d*f - a*f*(e - Sqrt[e^2 - 4*d*f]) - c*d*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(4*a*f - b*(e + Sqrt
[e^2 - 4*d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c
*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[c*(e^2 - 2*d*f + e*Sqr
t[e^2 - 4*d*f]) + f*(2*a*f - b*(e + Sqrt[e^2 - 4*d*f]))])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 748

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 1033

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Sy
mbol] :> Simp[h*(a + b*x + c*x^2)^p*((d + e*x + f*x^2)^(q + 1)/(2*f*(p + q + 1))), x] - Dist[1/(2*f*(p + q + 1
)), Int[(a + b*x + c*x^2)^(p - 1)*(d + e*x + f*x^2)^q*Simp[h*p*(b*d - a*e) + a*(h*e - 2*g*f)*(p + q + 1) + (2*
h*p*(c*d - a*f) + b*(h*e - 2*g*f)*(p + q + 1))*x + (h*p*(c*e - b*f) + c*(h*e - 2*g*f)*(p + q + 1))*x^2, x], x]
, x] /; FreeQ[{a, b, c, d, e, f, g, h, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && GtQ[p, 0] && Ne
Q[p + q + 1, 0]

Rule 1046

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rule 1090

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x
_)^2]), x_Symbol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + (B*c - b*C)*x)
/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b^2 - 4*a*c
, 0] && NeQ[e^2 - 4*d*f, 0]

Rule 6860

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x+c x^2}}{x \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac {\sqrt {a+b x+c x^2}}{d x}+\frac {(-e-f x) \sqrt {a+b x+c x^2}}{d \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {\sqrt {a+b x+c x^2}}{x} \, dx}{d}+\frac {\int \frac {(-e-f x) \sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx}{d}\\ &=-\frac {\int \frac {-2 a-b x}{x \sqrt {a+b x+c x^2}} \, dx}{2 d}-\frac {\int \frac {-\frac {1}{2} (b d-2 a e) f-\frac {1}{2} f (2 c d-b e-2 a f) x+\frac {1}{2} b f^2 x^2}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{d f}\\ &=\frac {a \int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{d}-\frac {\int \frac {-\frac {1}{2} b d f^2-\frac {1}{2} (b d-2 a e) f^2+\left (-\frac {1}{2} b e f^2-\frac {1}{2} f^2 (2 c d-b e-2 a f)\right ) x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{d f^2}\\ &=-\frac {(2 a) \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{d}-\frac {\left (2 b d f-a f \left (e-\sqrt {e^2-4 d f}\right )-c d \left (e+\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{d \sqrt {e^2-4 d f}}+\frac {\left (2 b d f-c d \left (e-\sqrt {e^2-4 d f}\right )-a f \left (e+\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{d \sqrt {e^2-4 d f}}\\ &=-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{d}+\frac {\left (2 \left (2 b d f-a f \left (e-\sqrt {e^2-4 d f}\right )-c d \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d \sqrt {e^2-4 d f}}-\frac {\left (2 \left (2 b d f-c d \left (e-\sqrt {e^2-4 d f}\right )-a f \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d \sqrt {e^2-4 d f}}\\ &=-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{d}-\frac {\left (2 b d f-c d \left (e-\sqrt {e^2-4 d f}\right )-a f \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}+\frac {\left (2 b d f-a f \left (e-\sqrt {e^2-4 d f}\right )-c d \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.54, size = 467, normalized size = 0.89 \begin {gather*} \frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {c} x-\sqrt {a+x (b+c x)}}{\sqrt {a}}\right )-\text {RootSum}\left [b^2 d-a b e+a^2 f-4 b \sqrt {c} d \text {$\#$1}+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2+b e \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {b^2 d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-a c d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-a b e \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+a^2 f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 b \sqrt {c} d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+2 a \sqrt {c} e \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+c d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2-a f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{2 b \sqrt {c} d-a \sqrt {c} e-4 c d \text {$\#$1}-b e \text {$\#$1}+2 a f \text {$\#$1}+3 \sqrt {c} e \text {$\#$1}^2-2 f \text {$\#$1}^3}\&\right ]}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(x*(d + e*x + f*x^2)),x]

[Out]

(2*Sqrt[a]*ArcTanh[(Sqrt[c]*x - Sqrt[a + x*(b + c*x)])/Sqrt[a]] - RootSum[b^2*d - a*b*e + a^2*f - 4*b*Sqrt[c]*
d*#1 + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 + b*e*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (b^2*d*Log[-(Sqrt
[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a*c*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a*b*e*Log[-(Sqrt
[c]*x) + Sqrt[a + b*x + c*x^2] - #1] + a^2*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*b*Sqrt[c]*d*Lo
g[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 + 2*a*Sqrt[c]*e*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]
*#1 + c*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2 - a*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] -
 #1]*#1^2)/(2*b*Sqrt[c]*d - a*Sqrt[c]*e - 4*c*d*#1 - b*e*#1 + 2*a*f*#1 + 3*Sqrt[c]*e*#1^2 - 2*f*#1^3) & ])/d

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1690\) vs. \(2(460)=920\).
time = 0.18, size = 1691, normalized size = 3.23

method result size
default \(\text {Expression too large to display}\) \(1691\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/x/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)

[Out]

2*f/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*(1/2*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c*(-4*d*f+e^2
)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*
e*f-2*c*d*f+c*e^2)/f^2)^(1/2)+1/2/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*ln((1/2/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)+
c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+b
*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c
*d*f+c*e^2)/f^2)^(1/2))/c^(1/2)-1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^
2)/f^2*2^(1/2)/((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-
b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-
c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e
*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/
2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2
)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)))+2*f/(-e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*(1/2*(4*(x-1/2/f*(-
e+(-4*d*f+e^2)^(1/2)))^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(b*f*(-4*d*f
+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)+1/2*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/
f*ln((1/2*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f+c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2))))/c^(1/2)+((x-1/2/f*(-e+(-4*d*f+
e^2)^(1/2)))^2*c+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(b*f*(-4*d*f+e^2)^(1/2
)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/c^(1/2)-1/2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+
e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2*2^(1/2)/((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^
2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e
^2)/f^2+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((b*f*(-4*d*f+e^2)^(1/2
)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+4*(c
*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*
c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))))-4*f/(-e+(-4*d*f+e^2)^(1/2))/(
e+(-4*d*f+e^2)^(1/2))*((c*x^2+b*x+a)^(1/2)+1/2*b*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)-a^(1/2)*l
n((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/x/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x + a)/((f*x^2 + x*e + d)*x), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/x/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + b x + c x^{2}}}{x \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/x/(f*x**2+e*x+d),x)

[Out]

Integral(sqrt(a + b*x + c*x**2)/(x*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/x/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(sa

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {c\,x^2+b\,x+a}}{x\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(1/2)/(x*(d + e*x + f*x^2)),x)

[Out]

int((a + b*x + c*x^2)^(1/2)/(x*(d + e*x + f*x^2)), x)

________________________________________________________________________________________